If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+21x-17=0
a = 1; b = 21; c = -17;
Δ = b2-4ac
Δ = 212-4·1·(-17)
Δ = 509
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{509}}{2*1}=\frac{-21-\sqrt{509}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{509}}{2*1}=\frac{-21+\sqrt{509}}{2} $
| 17x-2+14x-4=180 | | 9x-19,2-0,3=1,5 | | 3t-9+5t=8t-9 | | 2x^-x=5x-5 | | 8x+8=9x+9 | | 4n+4=226 | | Y=5x+1(1,2) | | 4s+4=-2+5s | | 4(k−16)=12 | | 12z=8z+24 | | 8+t=56 | | 2x-3=-6+2 | | 180m+200=230 | | 6*6+4b=16 | | 16+56r=-208 | | 4+m/5+9=28 | | -8y+31=3(y+3) | | 19+1=-2(6x-10) | | 5-4(-1g)+8=1 | | -8+6d=1+6d | | r+11+8r=27+2 | | 6+4b=16 | | 2x-3=6+2 | | 3(4x−7)=2 | | 5+7x=x-13 | | -8x+12+12x=8 | | 3r+10=7r-50 | | 5g/5=20/5 | | 2x-15=2(x-2) | | 10x-5=230 | | -2b+7b=5b | | 10x2-8=(x+1) |